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Learning from Human Feedback

§ Vital to instruction tuning of LLMs + adaptation to specialised tasks
§ Preferences are cheaper to acquire than gold-standard summaries, 

translations, paraphrases, etc.
§ But which candidate outputs should we ask the human to compare? 

– Low training budget
– End user preferences Which summary do you prefer?

✔
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Ranking Model

§ A ranking function maps candidates to a “utility”
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Bayesian Ranker

§ Estimate a probability distribution over ranking functions
§ Compute the mean and variance of a set of sample predictions

𝑝 𝑓! = 𝑁('𝑓! , 𝑣!)
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Bayesian Optimisation

§ Goal: find the best output, don’t learn the whole function!
§ To select a pair, take current best, b, and the candidate a that 

maximises expected improvement: 
𝔼 max 𝑓" − 𝑓! , 0

𝑥" 𝑥!

After new label 𝑎 ≻ 𝑏
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Bayesian Ranker

§ Prior work used Gaussian processes
– Frozen feature representation
– Poor in high-dimensional feature space?
– Uncertainty in the embeddings and prior?
– Strong approximations for tractable inference

§ Can we do better with approximate 
Bayesian deep learning? 

– Tune the whole model from preferences
– Pretrained encoder (e.g., BERT)

Simpson et al., 2020, Interactive Text Ranking 
with Bayesian Optimisation: A Case Study on 
Community QA and Summarisation, TACL.
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Approx. Bayesian Deep Ranker
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Community Question Answering

§ Choose the best answer on StackExchange:
– Select the correct answer from 100 candidates
– StackExchange topics: Apple, Cooking, Travel

§ Train a distilRoBERTa ranker on training questions
§ Interactively tune the classifier for a specific question by collecting 

four simulated user preferences
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Multi-Document Extractive Summarisation

§ Extract a summary for a news topic
– DUC 2001, 2002, 2004 newswire datasets
– Rank 10,000 randomly-generated candidate summaries

§ Train a ranker on training topics with SUPERT as encoder 
§ Interactively tune the topic summary for a particular simulated user

– Each topic has three reference summaries written by different people
– Collect six preferences per summary



Summarisation Results 

Model Strategy Number of 
interactions

NDCG
@1%

GPPL BO expected 
improvement

20 0.636

Deep ranker Uncertainty 
sampling

6 0.551

+ MCD BO expected 
improvement

6 0.660



Conclusions

§ Small amounts of carefully chosen human feedback can quickly 
identify the best model outputs

§ Simple approximations to Bayesian deep learning provide effective 
uncertainty estimates for selecting feedback 

§ Limitations: users are simulated 
§ Future: 

– Can we apply BO to to tune LLMs or prompts with end-user feedback? 
– Do alternative approaches such as Bayesian layers (Tran et al, NeurIPS 

2019) outperform MCD? 


