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Underlying assumption

The more uncertain the model the more prone to error(s)...

✓ Detect OOD instances
✓ Decision making based on uncertainty

➡ Reject highly uncertainty outputs
➡ Interactive decision-making

✓ Adapt to areas with high uncertainty
➡ Active learning 
➡ Curriculum learning 

✓ Compare models with respect to their overall confidence



Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the harder it is to choose among valid candidate outputs
✴ (Baan et al. 2022;2024; Giulianelli et al. 2023)



Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the harder it is to choose among valid candidate outputs

✓ Link to human variability
➡ Sample more estimates

✴ (Baan et al. 2022;2024; Giulianelli et al. 2023)



Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the harder it is to choose among valid candidate outputs

✓ Link to human variability
➡ Sample more estimates

✓ Refine task

✴ (Baan et al. 2022;2024; Giulianelli et al. 2023)



Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the harder it is to choose among valid candidate outputs

✓ Link to human variability
➡ Sample more estimates

✓ Refine task
✓ Refine the input: Provide more information 

➡ To the model

✴ (Baan et al. 2022;2024; Giulianelli et al. 2023)



Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the harder it is to choose among valid candidate outputs

✓ Link to human variability
➡ Sample more estimates

✓ Refine task
✓ Refine the input: Provide more information 

➡ To the model
✓ Refine the output: Provide more information 

➡ To the user

✴ (Baan et al. 2022;2024; Giulianelli et al. 2023)
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What is a good uncertainty quantifier

Evaluation Interpretation

Applicability
conformal prediction

✯Machine Translation 
tasks
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Are our assumptions correct?

What are our assumptions on distribution?

MC dropout

Test-time augmentation

Deep ensembles

Bayesian Neural Networks Dirichlet-based uncertainty models 

Deterministic uncertainty models

Stochastic variational inference

Modeling annotator disagreement

Heteroscedastic vs homoscedastic  
noise

PriorNet (Malinin and Gales 2018)

➡ assumptions on modelling 
feature density 

➡ access to OOD data



Applicability: which uncertainties?

What are our assumptions on uncertainty source?



Applicability: which uncertainties?

aleatoric epistemic

What are our assumptions on uncertainty source?



Applicability: which uncertainties?

aleatoric epistemic

What are our assumptions on uncertainty source?

*(Baan et al., 2023)



Applicability: which uncertainties?

➢ Active learning setups
➢ Better detection of OOD instances

✓ Better detector of hallucinations 
(Xiao & Wang, 2021)

✓ Better for detecting domain shifts in 
MT evaluation

➢ Data filtering
➢ Ambiguity detection 

✓ Better for detecting low quality MT 
references

aleatoric epistemic

What are our assumptions on uncertainty source?

*(Baan et al., 2023)*(Zerva et al., 2022)



what can we use?



what can we use?

BERT

GPT-4?

GPT-3

PaLM

ELMo

GPT-2



what can we use?

BERT

GPT-4?

GPT-3

PaLM

ELMo

GPT-2



what can we use?

Retrain with different objectives?

Use several checkpoints?

Extend and tune with a different loss?

Access output probabilities?

Sample several times?

Test-time augmentation

BERT

GPT-4?

GPT-3

PaLM

ELMo

GPT-2

Prompt to output uncertainty?
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Evaluation
Well calibrated

✗ Sensitive to the choice of bin width
✗ small changes to model predictions can 

cause large jumps in the ECE
✗ Not suitable in tasks with high label 

variability

➢ Max calibration error
➢ Logit-smoothed ECE
➢ Human Entropy Calibration Score
➢ Human Distribution Calibration Error
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✗ Sensitive to outliers
✗ Not informative in terms of scale

➢ Correlation with error

ρ(u(Xtest), | ̂Ytest − Ytest | )
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Evaluation

true valuePrediction true valuePrediction

Width - Sharpness

Coverage

Robustness

Fairness

Tight intervals - peaky distributions

Including the true label in the confidence interval

Robust to noise injection - adversarial attacks

Similar behaviour across attributes
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How do we represent - interpret uncertainty scores?

Do people have a shared notion of risk/uncertainty/confidence?

The correct answer is B. 
I am 89% certain!

The 
correct answer is B. 
Confidence: 

The 
correct answer 
is probably B.

???
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Conformal prediction
Classification

Regression

         Process:

๏ Compute the                            quantile      over 
the non-conformity scores                      of 
the calibration set

๏ We can now compute the confidence 
intervals 

si := s(xi, yi)

⌈(n + 1)(1 − α)⌉
n

C ̂q(xtest) = {y ∈ Y : s(xtest, y) ≤ ̂q}

ℙ(Ytest ∈ C ̂q(Xtest)) ∈ [1 − α, 1 − α +
1

n + 1 ]

̂q

Guarantee on marginal coverage
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Interpretation

➔ width scaled with respect to desired coverage
✓ easier comparison between instances
✓ Meaningful intervals across tasks
✓ Non-parametric

Holds only for exchangeable data!
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tgt: a enfermeira deixou a bolsa no chão.

ref: o enfermeiro deixou a bolsa no chão.

Quality assessment: 0.7

Predicted quality: 0.6

MT model

MT evaluation 
model
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+

1
2

log ̂σ2

Heteroscedastic Regression

Direct Uncertainty Prediction

ℒDUP( ̂ϵ; ϵ) =
ϵ2
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+

1
2

log( ̂ϵ)2

Regress on the residuals!

MC Dropout

Deep Ensembles

❋(Glushkova et al., 2021, Zerva et al. 2022)

𝒩( ̂μ(x), ̂σ2(x))

❋(Zerva and Martins, 2023)



Conformal prediction for MT evaluation

ℒHTS( ̂μ, ̂σ2; y) =
(y − ̂μ)2

2 ̂σ2
+

1
2

log ̂σ2

Heteroscedastic Regression

Direct Uncertainty Prediction

ℒDUP( ̂ϵ; ϵ) =
ϵ2

2 ̂ϵ2
+

1
2

log( ̂ϵ)2

Regress on the residuals!
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s(x, y) =
|y − ̂y(x) |

u(x)
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Selecting the most suitable UQ

Coverage for different UQ on COMET  
  tested on WMT 2021 Metrics data 

        

MC Dropout 8.08 0.04

Deep Ensembles 6.99 0.07

Heteroscedastic reg. 2.69 0.24

Direct uncertainty pred. 1.81 0.27

Quantile regression 1.28 0.34

̂q ↓ r ↑

Coverage (and     ) aligns well with error 
correlation

❋(Zerva and Martins, 2023)
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Fairness
Beyond language

๏ Gender bias 
๏ Racial bias  
๏ Religious bias 
๏ Age bias 
๏ …

… sensitive, demographic attributesCan also be applied on continuous attributes

๏ Style preference 
๏ Formality 
๏ Example difficulty 
๏ Syntactic complexity 

… other linguistic aspects

❋(Zerva and Martins, 2023)
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src: the nurse left his bag on the floor.

tgt: a enfermeira deixou a bolsa no chão.

ref: o enfermeiro deixou a bolsa no chão.

Quality assessment: 0.7

Predicted quality: 0.6

MT model

MT evaluation 
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What about generation?

the nurse left his bag on the floor.     ➭       a enfermeira deixou a bolsa no chão.

sample

a enfermeira deixou a bolsa no chão
a enfermeira deixou a bolsa no chão
a enfermeira deixou a sua bolsa no chão
o enfermeiro deixou a bolsa no chão
a enfermeira deixou a mochila dele no chão

Access to output probabilities?
➡ Entropy-based uncertainty

No access to output probabilities?
➡ Deviation of output tokens
➡ Ask the model!

➡ As a sentence classification task
○ Treat each sample as a label

➡ Use one of the uncertainty estimates 
as non-conformity

Sentence level uncertainty Sentence level conformal prediction

❋(Kuhn et al. , 2023; Ye et al., 2024)
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What about generation?

the nurse left his bag on the floor.     ➭     

➡ Output probabilities
➡ Entropy-based methods
➡ Sampling + semantic entropy

Word level uncertainty

exchangeability assumption

Word level conformal prediction

 a enfermeira deixou a bolsa no chão .

❋(UImer et al., 2024)
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coverage gap
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Conformalising Machine Translation

✓ Comparable or even better performance 
to nucleus and top-k sampling

✓ Tighter confidence intervals 
✓ Better “worst-case” coverage

Non exchangeable 

Conformal prediction
✓ Robust to noise injection!

M2M100 - WMT 2022

Conformal prediction

❋(UImer et al., 2024)
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We can calibrate for any loss function

✤ False negative rate 
✤ Token-level F1 score 
✤ λ-insensitive absolute loss

Robust method
✓ Distribution shifts 
✓ Changepoints

width adapted to the distribution shifts while maintaining performance for the controlled value 

bounded
monotone

❋(Farinhas et al., 2024)

Efficient method
✓ Tighter prediction sets
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Conformal prediction

Evaluation Interpretation

Applicability

non-parametric
flexible calibration target

++coverage
++fairness

++robustness

prediction sets

Allow for further 
analysis and 
interpretation

Efficiency?
Better calibration weights?

Different losses?
Interpretation of output?



Overall

Towards a more accessible version of uncertainty

Evaluation Interpretation

Applicability



Thank you!
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