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Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the more prone to error(s)...

v Detect OOD instances
v Decision making based on uncertainty
= Reject highly uncertainty outputs
= Interactive decision-making
v Adapt to areas with high uncertainty
= Active learning
= Curriculum learning
v Compare models with respect to their overall confidence
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Models don’t always know what they don’t know

Underlying assumption

The more uncertain the model the harder it is to choose among valid candidate outputs
* (Baan et al. 2022;2024; Giulianelli et al. 2023)

v Link to human variability
= Sample more estimates

v Refine task

v Refine the input: Provide more information
= To the model

v Refine the output: Provide more information
= To the user
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Evaluation Interpretation

Applicability
conformal prediction

*Machine Translation
tasks
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Uncertainty in MT related tasks

6 —
®6‘ ( src: the nurse left his bag on the floor. s a Quality assessment: 0.7

( tgt: a enfermeira deixou a bolsa no chao. TR A

. >
- ref: o enfermeiro deixou a bolsa no chao. - Predicted quality: 0.6

MT evaluation
model

Google Translate
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Are our assumptions correct?

What are our assumptions on distribution?

Heteroscedastic vs homoscedastic
noise

A AANY

Modeling annotator disagreement

Bayesian Neural Networks

MC dropout

Deep ensembles

Test-time augmentation

Stochastic variational inference

Dirichlet-based uncertainty models

PriorNet (Malinin and Gales 2018)

Deterministic uncertainty models

= assumptions on modelling
feature density

= access to OOD data
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Applicability: which uncertainties?

What are our assumptions on uncertainty source?

aleatoric

o ©
oO

Data filtering
Ambiguity detection

vV

v Better for detecting low quality MT
references

*(Zerva et al., 2022)

Vv

epistemic

Active learning setups
Better detection of OOD instances

Better detector of hallucinations
(Xiao & Wang, 2021)

Better for detecting domain shifts in
MT evaluation

*(Baan et al., 2023)
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what can we use?

@ Prompt to output uncertainty?

® Test-time augmentation
® Access output probabilities?

® Sample several times?

GPT-3 ® Extend and tune with a different loss?

® Use several checkpoints?
GPT-2

BERT = ® Retrain with different objectives?
ELMo

P
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Well calibrated

Estimated Calibration error (ECE)

1 M
ECE = v Z lacc(B,,) — conf(B,)| X  Sensitive to the choice of bin width
b=1 X small changes to model predictions can
cause large jumps in the ECE
Not suitable in tasks with high label
variability

>

Max calibration error
Logit-smoothed ECE

Human Entropy Calibration Score
Human Distribution Calibration Error

YYVY
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Evaluation

> (Correlation with error
p(u(Xtest)7 | ?test - Ytestl )

r(u(Xtest)’ | Ytest - Ytest |)

> AUROC

TPR

FPR

Focussing on errors

X Sensitive to outliers
X Not informative in terms of scale

> AUC-RC
x RC
remaining i
errors\\\ £
>'°2> Confidence
3 threshold

Coverage (\_,/



Evaluation



Evaluation




Evaluation

- —3 ® -

Prediction (~) Ll7true value Prediction 6—) L‘#7true value



Evaluation

o —k @ —
Prediction (~) Ll7true value Prediction 6—) L‘#7true value




Evaluation

Xk ® 3

o —k @ —
Prediction 6) Ll7true value Prediction 6—) L‘#7true value




Evaluation

Width - Sharpness
Tight intervals - peaky distributions

Coverage
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Evaluation

Width - Sharpness Robustness
Tight intervals - peaky distributions Robust to noise injection - adversarial attacks
Coverage Fairness
Including the true label in the confidence interval Similar behaviour across attributes

3

ok
v %k %

@
@
o —k @ —
Prediction (~) Ll7true value Prediction 6—) L‘#7true value
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How do we represent - interpret uncertainty scores?

Do people have a shared notion of risk/uncertainty/confidence?

The correct answer is B.
| am 89% certain!

correct answer is B.
Confidence: B

correct answer
is probably B.




Turning to conformal prediction

and coverage
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Conformal prediction

- Ingredients:

® Testset {X. Yies)

® Held-out calibration set
Scal - {Xcal’ Ycal} = {(xl" yi)};;l

® Non-conformity score for each data point:

s; = s(x;,y;) A

@ Desired coverage 1-a /

u (j ) lower

A 4
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Conformal prediction

o

(¢S
@f Process:

®© Compute the [+ DA =] quantile § over

n
the non-conformity scores s; := s(x;,y;) of

the calibration set

® We can now compute the confidence
intervals  Cy(xeq) = {y €Y & s(Xeq ) < G}

u{j: ) lower

P(Yieq € Cy(Xieq)) € [1 —a, 1 —a+

n+1

C.> Guarantee on marginal coverage
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Interpretation

width scaled with respect to desired coverage
easier comparison between instances
Meaningful intervals across tasks
Non-parametric

SN

Holds only for exchangeable data!
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06% src: the nurse left his bag on the floor ] q :
< ' g ' REe . Quality assessment: 0.7

N\

Ugt: a enfermeira deixou a bolsa no chao.
>

) ref: 0 enfermeiro deixou a bolsa no chéo. S
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MC Dropout

Deep Ensembles
N (fi(x), 62(x))
Heteroscedastic Regression

G- 1.
P, 6%y) = + —log 62
nrs(4,673Y) 252 ) go

*(Glushkova et al., 2021, Zerva et al. 2022)
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Conformal prediction for MT evaluation

MC Dropout

Deep Ensembles
N (fi(x), 62(x))
Heteroscedastic Regression

(y—p» 1 o)
552 +510g0

Lurs(A,6%y) =

Direct Uncertainty Prediction

2
282
C% Regress on the residuals!

1
Zoupé;e) = + > log(é)?

*(Glushkova et al., 2021, Zerva et al. 2022)

Quantile regression

LG =0-»0{y <3} -1

Optimise to predict selected
quantiles instead of mean!

:|y—ﬂ@|

s(x,y) 00

*(Zerva and Martins, 2023)



Selecting the most suitable UQ

Coverage (%)

100 -

—=—- coverage threshold Calibration
[ Original uncertainty [ Conformal prediction

MC dropout Deep Ensemb. HTS regr. Deep Unc. Pred. Quantile regr.

Coverage for different UQ on COMET
tested on WMT 2021 Metrics data
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Coverage (and q ) aligns well with error
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Selecting the most suitable UQ

100 -

Coverage (%)

—=—- coverage threshold Calibration
[ Original uncertainty [ Conformal prediction

Coverage (and q ) aligns well with error
correlation

MC dropout Deep Ensemb. HTS regr. Deep Unc. Pred. Quantile regr.

Coverage for different UQ on COMET
tested on WMT 2021 Metrics data

gl r1
MC Dropout 8.08 0.04
Deep Ensembles 6.99 0.07
Heteroscedastic reg. 269 0.24

Direct uncertainty pred. --
Quantile regression --

*(Zerva and Martins, 2023)
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Access to fairness

What if we compute coverage with respect to specific attributes?

English-Czech
English-German
English-dapanese
English-Polish
English-Russian
English-Tamil
English-Chinese
Czech-English
German-English
Japanese-English
Khmer-English
Polish-English
Pashto-English
Russian-English
Tamil-English
Chinese-English

MCD
0.982
0.973
0.990
0.977
0.974
0.970
0.934
0.890
0.880
0.883
0.881
0.862
0.851
0.851

0.861

DE
0.959
0.971
0.978
0.948
0.958
0.952
0.983
0.871
0.888
0.856
0.875
0.833
0.854
0.828

0.833

HTS
0.939
0.925
0.987
0.914
0.936
0.949
0.991
0.884
0.867
0.921
0.948
0.932
0.831
0.878
0.868

DUP
0.875
0.863
0.886
0.882
0.862
0.892
0919
0.898
0.896
0.910
0.943
0.873
0.922
0.879
0.898
0.886

QNT
0.931
0.927
0.972
0914
0.926
0.858
0.945
0.875
0.902
0.887
0.840
0.849

0.888
0.883
0827

*(Zerva and Martins, 2023)



Access to fairness

What if we compute coverage with respect to specific attributes?

English-Czech
English-German
English-dapanese
English-Polish
English-Russian
English-Tamil
English-Chinese
Czech-English
German-English
Japanese-English
Khmer-English
Polish-English
Pashto-English
Russian-English
Tamil-English
Chinese-English

MCD
0.982
0.973
0.990
0.977
0.974
0.970
0.934
0.890
0.880
0.883
0.881
0.862
0.851
0.851

0.861

DE
0.959
0.971
0.978
0.948
0.958
0.952
0.983
0.871
0.888
0.856
0.875
0.833
0.854
0.828

0.833

HTS
0.939
0.925
0.987
0914
0.936
0.949
0.991
0.884
0.867
0.921
0.948
0.825
0.932
0.831
0.878
0.868

DUP
0.875
0.863
0.886
0.882
0.862
0.892
0919
0.898
0.896
0.910
0.943
0.873
0.922
0.879
0.898
0.886

QNT
0.931
0.927
0.972
0914
0.926
0.858
0.945
0.875
0.902
0.887
0.840
0.849

0.888
0.883

0.827

Language-wise
recalibration

*(Zerva and Martins, 2023)



Access to fairness

What if we compute coverage with respect to specific attributes?

MCD DE HTS DUP QNT MCD DE HTS DUP QNT
English-Czech 0.982 0.959 0939 0875 0.931 0.893 0917 0888 0.892 0.902
English-German 0973 0971 0925 0.863 0.927 0.902 0902 0902 0.896 0.893
English-Japanese 0990 0.978 0987 0.886 0.972 0909 0.891 0900 0.891 0.904
English-Polish 0977 0.948 0914 0.882 0914 _ 0.882 0.905 0895 0.900 0.898
English-Russian 0974 0958 093 0862 0926 Language-wise (900 0898 0908 0906 0.903
English-Tamil 0970 0952 0949 0.892 0.858 recalibration 0903 0.895 0.883 0.886 0.903
English-Chinese ~ 0.934 0.983 0991 0919 0.945 0.880 0.890 0.884 0.896 0.896
Czech-English 0.890 0.871 0.884 0.898 0.875 0.890 0917 0909 0.904 0.894
German-English 0.880 0.888 0.867 0.896 0.902 0.897 0.901 0901 0.897 0.903
Japanese-English  0.883 0.856 0921 0910 0.887 0900 0912 0.899 0.894 0.902
Khmer-English 0.881 0.875 0948 0.943 | 0.840 0.896 0.903 0902 0.904 0.894
Polish-English 0.862 0.833 0.873 0.849 0.900 0.905 0893 0.894 0.877
Pashto-English 0.851 0.854 0932 0922 JONS6) 0.905 0.899 0900 0.884 0.907
Tamil-English HO793) 0.809 0.878 0.898 0.883 0.884 0.901 0886 0.901 0.908
Chinese-English  ~ 0.861 [0.833" 0.868 0.886 [0:827 0.900 0.910 0908 0.900 0.905

*(Zerva and Martins, 2023)
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Fairness

Beyond language

Can also be applied on continuous attributes

Equalized coverage by uncertainty scores

1.0

0.8

0.6+

0.4

0.2

0.0 " " " " "
0.1 0.2 0.3 0.4 0.5

—— Imbalanced coverage ---- desired cover segment frequency
—— obtained cover

*(Zerva and Martins, 2023)
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Beyond language

Can also be applied on continuous attributes ... sensitive, demographic attributes

Equalized coverage by uncertainty scores .

1.0/ R ® Gender bias

___________ ® Racial bias
0.8 @ Religious bias
® Age bias

0.61 ® ...

0.41

0.21

0.0 0.1 0.2 0.3 0.4 0.5

—— Imbalanced coverage ---- desired cover segment frequency

—— obtained cover

*(Zerva and Martins, 2023)



Fairness

Beyond language

Can also be applied on continuous attributes ... sensitive, demographic attributes
Equalized coverage by uncertainty scores .
1.0/ R ® Gender bias
_____ — @ Racial bias
0.8 @ Religious bias
® Age bias
0.6 ® ...
0.4 ... other linguistic aspects
® Style preference
0-21 ® Formality
® Example difficulty
0070 o 03 04 05 ® Syntactic complexity
—— Imbalanced coverage ---- desired cover segment frequency

—— obtained cover

*(Zerva and Martins, 2023)
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Conformalising MT

-------------------
.......................
-----
......
.....
I‘ gy
[ 34 ]

- ,‘6\ & ( src: the nurse left his bag on the floor. ™.
......... ( tgt a enfermeira deixou a bolsa no chao‘_‘_»“’
) ref: 0 enfermeiro deixou a bolsa no chéo. -

"N Quality assessment: 0.7

Predicted quality: 0.6

MT evaluation
model
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the nurse left his bag on the floor. © a enfermeira deixou a bolsa no chéo.

a enfermeira deixou a bolsa no chao

a enfermeira deixou a bolsa no chao
sample a enfermeira deixou a sua bolsa no chao

o0 enfermeiro deixou a bolsa no chao
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What about generation?

the nurse left his bag on the floor. © a enfermeira deixou a bolsa no chéo.

a enfermeira deixou a bolsa no chao

a enfermeira deixou a bolsa no chao
sample a enfermeira deixou a sua bolsa no chao

o0 enfermeiro deixou a bolsa no chao

a enfermeira deixou a mochila dele no chao

Sentence level uncertainty

Access to output probabilities?
= Entropy-based uncertainty

No access to output probabilities?
= Deviation of output tokens
= Ask the model!
*(Kuhn et al. , 2023; Ye et al., 2024)



What about generation?

the nurse left his bag on the floor. ©

sample

Sentence level uncertainty

Access to output probabilities?
= Entropy-based uncertainty

No access to output probabilities?
= Deviation of output tokens
= Ask the model!

a enfermeira deixou a bolsa no chéao.

a enfermeira deixou a bolsa no chao

a enfermeira deixou a bolsa no chao

a enfermeira deixou a sua bolsa no chao

o0 enfermeiro deixou a bolsa no chao

a enfermeira deixou a mochila dele no chao

Sentence level conformal prediction

= As a sentence classification task
o Treat each sample as a label
= Use one of the uncertainty estimates
as non-conformity

*(Kuhn et al. , 2023; Ye et al., 2024)
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What about generation?

the nurse left his bag on the floor. @ a enfermeira deixou a bolsa nochéo .
Word level uncertainty Word level conformal prediction

= Qutput probabilities
= Entropy-based methods
= Sampling + semantic entropy

X exchangeability assumption

*(Ulmer et al., 2024)
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n
P(Ytest € C@(Xtest)) >1l-a P<Ytest € Cf](Xtest)) >21l-—a- Z l'~Vt'€i
i=1
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.........

P(Ytest € C@(Xtest)) >1l-a P<Ytest € Cf](Xtest)) >21l-—a- Z Wiei
i=1

non ex.
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Non-exchangeable CP bound (Barber et al., 2023) coverage gap

.........

P(Ytest € C@(Xtest)) >1l-a P<Ytest € Cc}(Xtest)) >21l-—a- Z Wiei
i=1

non ex. € = dTV((xi’ yi)7 (xtest’ ytest)) v

/\/ We want this to be small!

A
... hot that easy to compute
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Conformalised Generation

Non-exchangeable CP bound (Barber et al., 2023) coverage gap

.........

P(Ytest € C@(Xtest)) >1l-a P<Ytest € Cc}(Xtest)) >21l-—a- Z Wiei
i=1

non ex. € = dTV((xi’ yi), (xtest’ ytest)) ‘\f

/\/ We want this to be small!

... not that easy to cé’r’npute 4
Y

meaningful weights = small coverage gap

*(Ulmer et al., 2024)
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® Use the hidden representation of our LM

® Select a calibration set at every step of
generation

® kNN to dynamically select the calibration set
from a datastore

@ distance metric to compute the weights
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Conformalised Generation

Our solution: ® P
@ ®
® Use the hidden representation of our LM ® ®
® Select a calibration set at every step of ® @
generation ® ®
® kNN to dynamically select the calibration set @ ®
from a datastore ®

@ distance metric to compute the weights

*(Ulmer et al., 2024)
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Beyond coverage

We can calibrate for any loss function

mondtone
bounded
Robust method
< False negative rate v Distribution shifts
¢ Token-level F1 score v Changepoints

< A-insensitive absolute loss
Efficient method

v Tighter prediction sets

width adapted to the distribution shifts while maintaining performance for the controlled value

*(Farinhas et al., 2024)
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Open QA

when were cigarette ads banned from tv uk?

who told the story of the prodigal son?

who was the 11th prime minister of canada?

what is the year round weather in dubai?
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Conformal prediction

++coverage
% ++fairness  Evaluation
++robustness

e

Efficiency?
Better calibration weights?

Applicability

non-parametric
flexible calibration target

prediction sets lﬂj

Allow for further
= analysis and
interpretation

Interpretation

Different losses?
Interpretation of output?



Overall

Towards a more accessible version of uncertainty

Evaluation Interpretation

Applicability



Thank you!
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