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Majority Vote Aggregation: Minority 
votes are discarded as Noise

Different perspectives 
essential for 

subjective tasks?
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Assumption – Single correct 
label exists

Research Questions?

Correlation between human disagreement 
on instances and model’s uncertainty in 
prediction when using majority labels?

All annotations available Does learning from raw annotations 
enhance the model’s confidence?

Are perspectivist classification models 
effective?
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Model uncertainty

Mean of probabilities for 
gold label across epochs.

Standard Deviation of 
probabilities for gold label 

across epochs.

Quantifying uncertainty in modelling - Data Maps (Swayamdipta et al., 2020)

Assumption – Noisy samples lead to uncertainty in modelling.

MDA (Leonardelli et al., EMNLP 2021)
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Correlation between human disagreement on instances 
and model’s uncertainty when using majority labels?

Annotator Agreement Level (am) :
fraction of annotations that align with 
majority vote for a text sample

Text Ann1 Ann3Ann2 Ann4

1

1
10

1

Majority Vote = 1 (am=0.75)

Annotator Agreement Level
A measure to quantify 
disagreement between annotators 
on a label for a given sample.
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Correlation between human disagreement on instances 
and model’s uncertainty when using majority labels?

Text Classification Model 
(RoBERTa)

Prediction for 
Text

Text1
Data

Text2

Single-GT 
model

Input Text

Majority Label1

Majority Label2

Single Ground Truth Model: 
Majority vote label is considered as 

ground truth. We fine-tune RoBERTa
for our study

Modelling
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Does learning from raw annotations enhance the model’s 
confidence for the high disagreement samples?

Prediction for Text, Annotator Id

Input Text

Data
Text1 Ann1 Ann3Ann2 Ann4

Text2 Ann1 Ann3Ann2 Ann4

Annotator Id

Requirement: Models that take raw 
annotations as input

Multi-GT 
model

Multiple Ground Truth Model: Each 
annotation by an annotator is 
considered a ground truth. We 

consider DISCO (Weerasooriya et al., 
2023) for our study
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Multi-GT model
MDA

Label = 
Majority Vote

High 
Confidence

Label ≠ 
Majority Vote

Low 
Confidence

Consistent with observed trends in 
Single-GT model, higher agreement 
correlates with higher confidence

Can Multi-GT improve on high 
disagreement samples from Single-GT?
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Only focus on 
samples with am< 1.0

Can the model learn multiple annotators’ perspectives?



Information Sciences Institute

Multi-GT model
Can it learn multiple annotators’ perspectives?



Information Sciences Institute

Multi-GT model
Can it learn multiple annotators’ perspectives?

MDA



Information Sciences Institute

Multi-GT model
Can it learn multiple annotators’ perspectives?

MDA SBIC



Information Sciences Institute

Multi-GT model
Can it learn multiple annotators’ perspectives?

MDA SBIC

MHS



Information Sciences Institute

Multi-GT model
Can it learn multiple annotators’ perspectives?

MDA SBIC

MHS

Finds it difficult to learn 
multiple labels for MHS



Information Sciences Institute

Multi-GT model
Can it learn multiple annotators’ perspectives?

MDA SBIC

MHS

This dataset is extra challenging 
because avg number of annotations 
per annotator is ~ 17!

Finds it difficult to learn 
multiple labels for MHS
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Takeaways

Noise vs Bias?

More disagreement between annotators 
correlates with low model confidence

Multi-Gt model effectively utilizes minority vote 
annotations that are usually discarded as noise

Majority vote captures just a single 
perspective - insufficient for subjective tasks

Number of annotations per annotator 
important in modelling their perspective


